3.3.44 \(\int \frac {(e \sin (c+d x))^{3/2}}{(a+b \sec (c+d x))^2} \, dx\) [244]

Optimal. Leaf size=882 \[ \frac {b^3 e^{3/2} \text {ArcTan}\left (\frac {\sqrt {a} \sqrt {e \sin (c+d x)}}{\sqrt [4]{a^2-b^2} \sqrt {e}}\right )}{2 a^{7/2} \left (a^2-b^2\right )^{3/4} d}-\frac {2 b \sqrt [4]{a^2-b^2} e^{3/2} \text {ArcTan}\left (\frac {\sqrt {a} \sqrt {e \sin (c+d x)}}{\sqrt [4]{a^2-b^2} \sqrt {e}}\right )}{a^{7/2} d}+\frac {b^3 e^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {e \sin (c+d x)}}{\sqrt [4]{a^2-b^2} \sqrt {e}}\right )}{2 a^{7/2} \left (a^2-b^2\right )^{3/4} d}-\frac {2 b \sqrt [4]{a^2-b^2} e^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {e \sin (c+d x)}}{\sqrt [4]{a^2-b^2} \sqrt {e}}\right )}{a^{7/2} d}+\frac {2 e^2 F\left (\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {\sin (c+d x)}}{3 a^2 d \sqrt {e \sin (c+d x)}}-\frac {5 b^2 e^2 F\left (\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {\sin (c+d x)}}{a^4 d \sqrt {e \sin (c+d x)}}-\frac {b^4 e^2 \Pi \left (\frac {2 a}{a-\sqrt {a^2-b^2}};\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {\sin (c+d x)}}{2 a^4 \left (a^2-b^2-a \sqrt {a^2-b^2}\right ) d \sqrt {e \sin (c+d x)}}+\frac {2 b^2 \left (a^2-b^2\right ) e^2 \Pi \left (\frac {2 a}{a-\sqrt {a^2-b^2}};\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {\sin (c+d x)}}{a^4 \left (a^2-b^2-a \sqrt {a^2-b^2}\right ) d \sqrt {e \sin (c+d x)}}-\frac {b^4 e^2 \Pi \left (\frac {2 a}{a+\sqrt {a^2-b^2}};\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {\sin (c+d x)}}{2 a^4 \left (a^2-b^2+a \sqrt {a^2-b^2}\right ) d \sqrt {e \sin (c+d x)}}+\frac {2 b^2 \left (a^2-b^2\right ) e^2 \Pi \left (\frac {2 a}{a+\sqrt {a^2-b^2}};\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {\sin (c+d x)}}{a^4 \left (a^2-b^2+a \sqrt {a^2-b^2}\right ) d \sqrt {e \sin (c+d x)}}+\frac {4 b e \sqrt {e \sin (c+d x)}}{a^3 d}-\frac {2 e \cos (c+d x) \sqrt {e \sin (c+d x)}}{3 a^2 d}+\frac {b^2 e \sqrt {e \sin (c+d x)}}{a^3 d (b+a \cos (c+d x))} \]

[Out]

1/2*b^3*e^(3/2)*arctan(a^(1/2)*(e*sin(d*x+c))^(1/2)/(a^2-b^2)^(1/4)/e^(1/2))/a^(7/2)/(a^2-b^2)^(3/4)/d-2*b*(a^
2-b^2)^(1/4)*e^(3/2)*arctan(a^(1/2)*(e*sin(d*x+c))^(1/2)/(a^2-b^2)^(1/4)/e^(1/2))/a^(7/2)/d+1/2*b^3*e^(3/2)*ar
ctanh(a^(1/2)*(e*sin(d*x+c))^(1/2)/(a^2-b^2)^(1/4)/e^(1/2))/a^(7/2)/(a^2-b^2)^(3/4)/d-2*b*(a^2-b^2)^(1/4)*e^(3
/2)*arctanh(a^(1/2)*(e*sin(d*x+c))^(1/2)/(a^2-b^2)^(1/4)/e^(1/2))/a^(7/2)/d-2/3*e^2*(sin(1/2*c+1/4*Pi+1/2*d*x)
^2)^(1/2)/sin(1/2*c+1/4*Pi+1/2*d*x)*EllipticF(cos(1/2*c+1/4*Pi+1/2*d*x),2^(1/2))*sin(d*x+c)^(1/2)/a^2/d/(e*sin
(d*x+c))^(1/2)+5*b^2*e^2*(sin(1/2*c+1/4*Pi+1/2*d*x)^2)^(1/2)/sin(1/2*c+1/4*Pi+1/2*d*x)*EllipticF(cos(1/2*c+1/4
*Pi+1/2*d*x),2^(1/2))*sin(d*x+c)^(1/2)/a^4/d/(e*sin(d*x+c))^(1/2)+1/2*b^4*e^2*(sin(1/2*c+1/4*Pi+1/2*d*x)^2)^(1
/2)/sin(1/2*c+1/4*Pi+1/2*d*x)*EllipticPi(cos(1/2*c+1/4*Pi+1/2*d*x),2*a/(a-(a^2-b^2)^(1/2)),2^(1/2))*sin(d*x+c)
^(1/2)/a^4/d/(a^2-b^2-a*(a^2-b^2)^(1/2))/(e*sin(d*x+c))^(1/2)-2*b^2*(a^2-b^2)*e^2*(sin(1/2*c+1/4*Pi+1/2*d*x)^2
)^(1/2)/sin(1/2*c+1/4*Pi+1/2*d*x)*EllipticPi(cos(1/2*c+1/4*Pi+1/2*d*x),2*a/(a-(a^2-b^2)^(1/2)),2^(1/2))*sin(d*
x+c)^(1/2)/a^4/d/(a^2-b^2-a*(a^2-b^2)^(1/2))/(e*sin(d*x+c))^(1/2)+1/2*b^4*e^2*(sin(1/2*c+1/4*Pi+1/2*d*x)^2)^(1
/2)/sin(1/2*c+1/4*Pi+1/2*d*x)*EllipticPi(cos(1/2*c+1/4*Pi+1/2*d*x),2*a/(a+(a^2-b^2)^(1/2)),2^(1/2))*sin(d*x+c)
^(1/2)/a^4/d/(a^2-b^2+a*(a^2-b^2)^(1/2))/(e*sin(d*x+c))^(1/2)-2*b^2*(a^2-b^2)*e^2*(sin(1/2*c+1/4*Pi+1/2*d*x)^2
)^(1/2)/sin(1/2*c+1/4*Pi+1/2*d*x)*EllipticPi(cos(1/2*c+1/4*Pi+1/2*d*x),2*a/(a+(a^2-b^2)^(1/2)),2^(1/2))*sin(d*
x+c)^(1/2)/a^4/d/(a^2-b^2+a*(a^2-b^2)^(1/2))/(e*sin(d*x+c))^(1/2)+4*b*e*(e*sin(d*x+c))^(1/2)/a^3/d-2/3*e*cos(d
*x+c)*(e*sin(d*x+c))^(1/2)/a^2/d+b^2*e*(e*sin(d*x+c))^(1/2)/a^3/d/(b+a*cos(d*x+c))

________________________________________________________________________________________

Rubi [A]
time = 1.56, antiderivative size = 882, normalized size of antiderivative = 1.00, number of steps used = 32, number of rules used = 15, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.600, Rules used = {3957, 2991, 2715, 2721, 2720, 2772, 2946, 2781, 2886, 2884, 335, 218, 214, 211, 2774} \begin {gather*} -\frac {e^2 \Pi \left (\frac {2 a}{a-\sqrt {a^2-b^2}};\left .\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )\right |2\right ) \sqrt {\sin (c+d x)} b^4}{2 a^4 \left (a^2-\sqrt {a^2-b^2} a-b^2\right ) d \sqrt {e \sin (c+d x)}}-\frac {e^2 \Pi \left (\frac {2 a}{a+\sqrt {a^2-b^2}};\left .\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )\right |2\right ) \sqrt {\sin (c+d x)} b^4}{2 a^4 \left (a^2+\sqrt {a^2-b^2} a-b^2\right ) d \sqrt {e \sin (c+d x)}}+\frac {e^{3/2} \text {ArcTan}\left (\frac {\sqrt {a} \sqrt {e \sin (c+d x)}}{\sqrt [4]{a^2-b^2} \sqrt {e}}\right ) b^3}{2 a^{7/2} \left (a^2-b^2\right )^{3/4} d}+\frac {e^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {e \sin (c+d x)}}{\sqrt [4]{a^2-b^2} \sqrt {e}}\right ) b^3}{2 a^{7/2} \left (a^2-b^2\right )^{3/4} d}+\frac {e \sqrt {e \sin (c+d x)} b^2}{a^3 d (b+a \cos (c+d x))}-\frac {5 e^2 F\left (\left .\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )\right |2\right ) \sqrt {\sin (c+d x)} b^2}{a^4 d \sqrt {e \sin (c+d x)}}+\frac {2 \left (a^2-b^2\right ) e^2 \Pi \left (\frac {2 a}{a-\sqrt {a^2-b^2}};\left .\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )\right |2\right ) \sqrt {\sin (c+d x)} b^2}{a^4 \left (a^2-\sqrt {a^2-b^2} a-b^2\right ) d \sqrt {e \sin (c+d x)}}+\frac {2 \left (a^2-b^2\right ) e^2 \Pi \left (\frac {2 a}{a+\sqrt {a^2-b^2}};\left .\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )\right |2\right ) \sqrt {\sin (c+d x)} b^2}{a^4 \left (a^2+\sqrt {a^2-b^2} a-b^2\right ) d \sqrt {e \sin (c+d x)}}-\frac {2 \sqrt [4]{a^2-b^2} e^{3/2} \text {ArcTan}\left (\frac {\sqrt {a} \sqrt {e \sin (c+d x)}}{\sqrt [4]{a^2-b^2} \sqrt {e}}\right ) b}{a^{7/2} d}-\frac {2 \sqrt [4]{a^2-b^2} e^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {e \sin (c+d x)}}{\sqrt [4]{a^2-b^2} \sqrt {e}}\right ) b}{a^{7/2} d}+\frac {4 e \sqrt {e \sin (c+d x)} b}{a^3 d}-\frac {2 e \cos (c+d x) \sqrt {e \sin (c+d x)}}{3 a^2 d}+\frac {2 e^2 F\left (\left .\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )\right |2\right ) \sqrt {\sin (c+d x)}}{3 a^2 d \sqrt {e \sin (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(e*Sin[c + d*x])^(3/2)/(a + b*Sec[c + d*x])^2,x]

[Out]

(b^3*e^(3/2)*ArcTan[(Sqrt[a]*Sqrt[e*Sin[c + d*x]])/((a^2 - b^2)^(1/4)*Sqrt[e])])/(2*a^(7/2)*(a^2 - b^2)^(3/4)*
d) - (2*b*(a^2 - b^2)^(1/4)*e^(3/2)*ArcTan[(Sqrt[a]*Sqrt[e*Sin[c + d*x]])/((a^2 - b^2)^(1/4)*Sqrt[e])])/(a^(7/
2)*d) + (b^3*e^(3/2)*ArcTanh[(Sqrt[a]*Sqrt[e*Sin[c + d*x]])/((a^2 - b^2)^(1/4)*Sqrt[e])])/(2*a^(7/2)*(a^2 - b^
2)^(3/4)*d) - (2*b*(a^2 - b^2)^(1/4)*e^(3/2)*ArcTanh[(Sqrt[a]*Sqrt[e*Sin[c + d*x]])/((a^2 - b^2)^(1/4)*Sqrt[e]
)])/(a^(7/2)*d) + (2*e^2*EllipticF[(c - Pi/2 + d*x)/2, 2]*Sqrt[Sin[c + d*x]])/(3*a^2*d*Sqrt[e*Sin[c + d*x]]) -
 (5*b^2*e^2*EllipticF[(c - Pi/2 + d*x)/2, 2]*Sqrt[Sin[c + d*x]])/(a^4*d*Sqrt[e*Sin[c + d*x]]) - (b^4*e^2*Ellip
ticPi[(2*a)/(a - Sqrt[a^2 - b^2]), (c - Pi/2 + d*x)/2, 2]*Sqrt[Sin[c + d*x]])/(2*a^4*(a^2 - b^2 - a*Sqrt[a^2 -
 b^2])*d*Sqrt[e*Sin[c + d*x]]) + (2*b^2*(a^2 - b^2)*e^2*EllipticPi[(2*a)/(a - Sqrt[a^2 - b^2]), (c - Pi/2 + d*
x)/2, 2]*Sqrt[Sin[c + d*x]])/(a^4*(a^2 - b^2 - a*Sqrt[a^2 - b^2])*d*Sqrt[e*Sin[c + d*x]]) - (b^4*e^2*EllipticP
i[(2*a)/(a + Sqrt[a^2 - b^2]), (c - Pi/2 + d*x)/2, 2]*Sqrt[Sin[c + d*x]])/(2*a^4*(a^2 - b^2 + a*Sqrt[a^2 - b^2
])*d*Sqrt[e*Sin[c + d*x]]) + (2*b^2*(a^2 - b^2)*e^2*EllipticPi[(2*a)/(a + Sqrt[a^2 - b^2]), (c - Pi/2 + d*x)/2
, 2]*Sqrt[Sin[c + d*x]])/(a^4*(a^2 - b^2 + a*Sqrt[a^2 - b^2])*d*Sqrt[e*Sin[c + d*x]]) + (4*b*e*Sqrt[e*Sin[c +
d*x]])/(a^3*d) - (2*e*Cos[c + d*x]*Sqrt[e*Sin[c + d*x]])/(3*a^2*d) + (b^2*e*Sqrt[e*Sin[c + d*x]])/(a^3*d*(b +
a*Cos[c + d*x]))

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 218

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]},
Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !Gt
Q[a/b, 0]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 2715

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Sin[c + d*x])^(n - 1)/(d*n))
, x] + Dist[b^2*((n - 1)/n), Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integ
erQ[2*n]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2721

Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*Sin[c + d*x])^n/Sin[c + d*x]^n, Int[Sin[c + d*x]
^n, x], x] /; FreeQ[{b, c, d}, x] && LtQ[-1, n, 1] && IntegerQ[2*n]

Rule 2772

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[g*(g*C
os[e + f*x])^(p - 1)*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 1))), x] + Dist[g^2*((p - 1)/(b*(m + 1))), Int[(g
*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^(m + 1)*Sin[e + f*x], x], x] /; FreeQ[{a, b, e, f, g}, x] && NeQ[a
^2 - b^2, 0] && LtQ[m, -1] && GtQ[p, 1] && IntegersQ[2*m, 2*p]

Rule 2774

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[g*(g*C
os[e + f*x])^(p - 1)*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + p))), x] + Dist[g^2*((p - 1)/(b*(m + p))), Int[(g
*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^m*(b + a*Sin[e + f*x]), x], x] /; FreeQ[{a, b, e, f, g, m}, x] &&
NeQ[a^2 - b^2, 0] && GtQ[p, 1] && NeQ[m + p, 0] && IntegersQ[2*m, 2*p]

Rule 2781

Int[1/(Sqrt[cos[(e_.) + (f_.)*(x_)]*(g_.)]*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> With[{q = Rt[
-a^2 + b^2, 2]}, Dist[-a/(2*q), Int[1/(Sqrt[g*Cos[e + f*x]]*(q + b*Cos[e + f*x])), x], x] + (Dist[b*(g/f), Sub
st[Int[1/(Sqrt[x]*(g^2*(a^2 - b^2) + b^2*x^2)), x], x, g*Cos[e + f*x]], x] - Dist[a/(2*q), Int[1/(Sqrt[g*Cos[e
 + f*x]]*(q - b*Cos[e + f*x])), x], x])] /; FreeQ[{a, b, e, f, g}, x] && NeQ[a^2 - b^2, 0]

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 2886

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d/
(c + d))*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 2946

Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]))/((a_) + (b_.)*sin[(e_.) + (
f_.)*(x_)]), x_Symbol] :> Dist[d/b, Int[(g*Cos[e + f*x])^p, x], x] + Dist[(b*c - a*d)/b, Int[(g*Cos[e + f*x])^
p/(a + b*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[a^2 - b^2, 0]

Rule 2991

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*
(x_)])^(m_), x_Symbol] :> Int[ExpandTrig[(g*cos[e + f*x])^p, (d*sin[e + f*x])^n*(a + b*sin[e + f*x])^m, x], x]
 /; FreeQ[{a, b, d, e, f, g, n, p}, x] && NeQ[a^2 - b^2, 0] && IntegerQ[m] && (GtQ[m, 0] || IntegerQ[n])

Rule 3957

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.), x_Symbol] :> Int[(g*Co
s[e + f*x])^p*((b + a*Sin[e + f*x])^m/Sin[e + f*x]^m), x] /; FreeQ[{a, b, e, f, g, p}, x] && IntegerQ[m]

Rubi steps

\begin {align*} \int \frac {(e \sin (c+d x))^{3/2}}{(a+b \sec (c+d x))^2} \, dx &=\int \frac {\cos ^2(c+d x) (e \sin (c+d x))^{3/2}}{(-b-a \cos (c+d x))^2} \, dx\\ &=\int \left (\frac {(e \sin (c+d x))^{3/2}}{a^2}+\frac {b^2 (e \sin (c+d x))^{3/2}}{a^2 (b+a \cos (c+d x))^2}-\frac {2 b (e \sin (c+d x))^{3/2}}{a^2 (b+a \cos (c+d x))}\right ) \, dx\\ &=\frac {\int (e \sin (c+d x))^{3/2} \, dx}{a^2}-\frac {(2 b) \int \frac {(e \sin (c+d x))^{3/2}}{b+a \cos (c+d x)} \, dx}{a^2}+\frac {b^2 \int \frac {(e \sin (c+d x))^{3/2}}{(b+a \cos (c+d x))^2} \, dx}{a^2}\\ &=\frac {4 b e \sqrt {e \sin (c+d x)}}{a^3 d}-\frac {2 e \cos (c+d x) \sqrt {e \sin (c+d x)}}{3 a^2 d}+\frac {b^2 e \sqrt {e \sin (c+d x)}}{a^3 d (b+a \cos (c+d x))}+\frac {e^2 \int \frac {1}{\sqrt {e \sin (c+d x)}} \, dx}{3 a^2}+\frac {\left (2 b e^2\right ) \int \frac {-a-b \cos (c+d x)}{(b+a \cos (c+d x)) \sqrt {e \sin (c+d x)}} \, dx}{a^3}-\frac {\left (b^2 e^2\right ) \int \frac {\cos (c+d x)}{(b+a \cos (c+d x)) \sqrt {e \sin (c+d x)}} \, dx}{2 a^3}\\ &=\frac {4 b e \sqrt {e \sin (c+d x)}}{a^3 d}-\frac {2 e \cos (c+d x) \sqrt {e \sin (c+d x)}}{3 a^2 d}+\frac {b^2 e \sqrt {e \sin (c+d x)}}{a^3 d (b+a \cos (c+d x))}-\frac {\left (b^2 e^2\right ) \int \frac {1}{\sqrt {e \sin (c+d x)}} \, dx}{2 a^4}-\frac {\left (2 b^2 e^2\right ) \int \frac {1}{\sqrt {e \sin (c+d x)}} \, dx}{a^4}+\frac {\left (b^3 e^2\right ) \int \frac {1}{(b+a \cos (c+d x)) \sqrt {e \sin (c+d x)}} \, dx}{2 a^4}-\frac {\left (2 b \left (a^2-b^2\right ) e^2\right ) \int \frac {1}{(b+a \cos (c+d x)) \sqrt {e \sin (c+d x)}} \, dx}{a^4}+\frac {\left (e^2 \sqrt {\sin (c+d x)}\right ) \int \frac {1}{\sqrt {\sin (c+d x)}} \, dx}{3 a^2 \sqrt {e \sin (c+d x)}}\\ &=\frac {2 e^2 F\left (\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {\sin (c+d x)}}{3 a^2 d \sqrt {e \sin (c+d x)}}+\frac {4 b e \sqrt {e \sin (c+d x)}}{a^3 d}-\frac {2 e \cos (c+d x) \sqrt {e \sin (c+d x)}}{3 a^2 d}+\frac {b^2 e \sqrt {e \sin (c+d x)}}{a^3 d (b+a \cos (c+d x))}-\frac {\left (b^4 e^2\right ) \int \frac {1}{\sqrt {e \sin (c+d x)} \left (\sqrt {a^2-b^2}-a \sin (c+d x)\right )} \, dx}{4 a^4 \sqrt {a^2-b^2}}-\frac {\left (b^4 e^2\right ) \int \frac {1}{\sqrt {e \sin (c+d x)} \left (\sqrt {a^2-b^2}+a \sin (c+d x)\right )} \, dx}{4 a^4 \sqrt {a^2-b^2}}+\frac {\left (b^2 \sqrt {a^2-b^2} e^2\right ) \int \frac {1}{\sqrt {e \sin (c+d x)} \left (\sqrt {a^2-b^2}-a \sin (c+d x)\right )} \, dx}{a^4}+\frac {\left (b^2 \sqrt {a^2-b^2} e^2\right ) \int \frac {1}{\sqrt {e \sin (c+d x)} \left (\sqrt {a^2-b^2}+a \sin (c+d x)\right )} \, dx}{a^4}-\frac {\left (b^3 e^3\right ) \text {Subst}\left (\int \frac {1}{\sqrt {x} \left (\left (-a^2+b^2\right ) e^2+a^2 x^2\right )} \, dx,x,e \sin (c+d x)\right )}{2 a^3 d}+\frac {\left (2 b \left (a^2-b^2\right ) e^3\right ) \text {Subst}\left (\int \frac {1}{\sqrt {x} \left (\left (-a^2+b^2\right ) e^2+a^2 x^2\right )} \, dx,x,e \sin (c+d x)\right )}{a^3 d}-\frac {\left (b^2 e^2 \sqrt {\sin (c+d x)}\right ) \int \frac {1}{\sqrt {\sin (c+d x)}} \, dx}{2 a^4 \sqrt {e \sin (c+d x)}}-\frac {\left (2 b^2 e^2 \sqrt {\sin (c+d x)}\right ) \int \frac {1}{\sqrt {\sin (c+d x)}} \, dx}{a^4 \sqrt {e \sin (c+d x)}}\\ &=\frac {2 e^2 F\left (\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {\sin (c+d x)}}{3 a^2 d \sqrt {e \sin (c+d x)}}-\frac {5 b^2 e^2 F\left (\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {\sin (c+d x)}}{a^4 d \sqrt {e \sin (c+d x)}}+\frac {4 b e \sqrt {e \sin (c+d x)}}{a^3 d}-\frac {2 e \cos (c+d x) \sqrt {e \sin (c+d x)}}{3 a^2 d}+\frac {b^2 e \sqrt {e \sin (c+d x)}}{a^3 d (b+a \cos (c+d x))}-\frac {\left (b^3 e^3\right ) \text {Subst}\left (\int \frac {1}{\left (-a^2+b^2\right ) e^2+a^2 x^4} \, dx,x,\sqrt {e \sin (c+d x)}\right )}{a^3 d}+\frac {\left (4 b \left (a^2-b^2\right ) e^3\right ) \text {Subst}\left (\int \frac {1}{\left (-a^2+b^2\right ) e^2+a^2 x^4} \, dx,x,\sqrt {e \sin (c+d x)}\right )}{a^3 d}-\frac {\left (b^4 e^2 \sqrt {\sin (c+d x)}\right ) \int \frac {1}{\sqrt {\sin (c+d x)} \left (\sqrt {a^2-b^2}-a \sin (c+d x)\right )} \, dx}{4 a^4 \sqrt {a^2-b^2} \sqrt {e \sin (c+d x)}}-\frac {\left (b^4 e^2 \sqrt {\sin (c+d x)}\right ) \int \frac {1}{\sqrt {\sin (c+d x)} \left (\sqrt {a^2-b^2}+a \sin (c+d x)\right )} \, dx}{4 a^4 \sqrt {a^2-b^2} \sqrt {e \sin (c+d x)}}+\frac {\left (b^2 \sqrt {a^2-b^2} e^2 \sqrt {\sin (c+d x)}\right ) \int \frac {1}{\sqrt {\sin (c+d x)} \left (\sqrt {a^2-b^2}-a \sin (c+d x)\right )} \, dx}{a^4 \sqrt {e \sin (c+d x)}}+\frac {\left (b^2 \sqrt {a^2-b^2} e^2 \sqrt {\sin (c+d x)}\right ) \int \frac {1}{\sqrt {\sin (c+d x)} \left (\sqrt {a^2-b^2}+a \sin (c+d x)\right )} \, dx}{a^4 \sqrt {e \sin (c+d x)}}\\ &=\frac {2 e^2 F\left (\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {\sin (c+d x)}}{3 a^2 d \sqrt {e \sin (c+d x)}}-\frac {5 b^2 e^2 F\left (\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {\sin (c+d x)}}{a^4 d \sqrt {e \sin (c+d x)}}-\frac {2 b^2 \sqrt {a^2-b^2} e^2 \Pi \left (\frac {2 a}{a-\sqrt {a^2-b^2}};\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {\sin (c+d x)}}{a^4 \left (a-\sqrt {a^2-b^2}\right ) d \sqrt {e \sin (c+d x)}}-\frac {b^4 e^2 \Pi \left (\frac {2 a}{a-\sqrt {a^2-b^2}};\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {\sin (c+d x)}}{2 a^4 \left (a^2-b^2-a \sqrt {a^2-b^2}\right ) d \sqrt {e \sin (c+d x)}}-\frac {b^4 e^2 \Pi \left (\frac {2 a}{a+\sqrt {a^2-b^2}};\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {\sin (c+d x)}}{2 a^4 \sqrt {a^2-b^2} \left (a+\sqrt {a^2-b^2}\right ) d \sqrt {e \sin (c+d x)}}+\frac {2 b^2 \sqrt {a^2-b^2} e^2 \Pi \left (\frac {2 a}{a+\sqrt {a^2-b^2}};\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {\sin (c+d x)}}{a^4 \left (a+\sqrt {a^2-b^2}\right ) d \sqrt {e \sin (c+d x)}}+\frac {4 b e \sqrt {e \sin (c+d x)}}{a^3 d}-\frac {2 e \cos (c+d x) \sqrt {e \sin (c+d x)}}{3 a^2 d}+\frac {b^2 e \sqrt {e \sin (c+d x)}}{a^3 d (b+a \cos (c+d x))}+\frac {\left (b^3 e^2\right ) \text {Subst}\left (\int \frac {1}{\sqrt {a^2-b^2} e-a x^2} \, dx,x,\sqrt {e \sin (c+d x)}\right )}{2 a^3 \sqrt {a^2-b^2} d}+\frac {\left (b^3 e^2\right ) \text {Subst}\left (\int \frac {1}{\sqrt {a^2-b^2} e+a x^2} \, dx,x,\sqrt {e \sin (c+d x)}\right )}{2 a^3 \sqrt {a^2-b^2} d}-\frac {\left (2 b \sqrt {a^2-b^2} e^2\right ) \text {Subst}\left (\int \frac {1}{\sqrt {a^2-b^2} e-a x^2} \, dx,x,\sqrt {e \sin (c+d x)}\right )}{a^3 d}-\frac {\left (2 b \sqrt {a^2-b^2} e^2\right ) \text {Subst}\left (\int \frac {1}{\sqrt {a^2-b^2} e+a x^2} \, dx,x,\sqrt {e \sin (c+d x)}\right )}{a^3 d}\\ &=\frac {b^3 e^{3/2} \tan ^{-1}\left (\frac {\sqrt {a} \sqrt {e \sin (c+d x)}}{\sqrt [4]{a^2-b^2} \sqrt {e}}\right )}{2 a^{7/2} \left (a^2-b^2\right )^{3/4} d}-\frac {2 b \sqrt [4]{a^2-b^2} e^{3/2} \tan ^{-1}\left (\frac {\sqrt {a} \sqrt {e \sin (c+d x)}}{\sqrt [4]{a^2-b^2} \sqrt {e}}\right )}{a^{7/2} d}+\frac {b^3 e^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {e \sin (c+d x)}}{\sqrt [4]{a^2-b^2} \sqrt {e}}\right )}{2 a^{7/2} \left (a^2-b^2\right )^{3/4} d}-\frac {2 b \sqrt [4]{a^2-b^2} e^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {e \sin (c+d x)}}{\sqrt [4]{a^2-b^2} \sqrt {e}}\right )}{a^{7/2} d}+\frac {2 e^2 F\left (\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {\sin (c+d x)}}{3 a^2 d \sqrt {e \sin (c+d x)}}-\frac {5 b^2 e^2 F\left (\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {\sin (c+d x)}}{a^4 d \sqrt {e \sin (c+d x)}}-\frac {2 b^2 \sqrt {a^2-b^2} e^2 \Pi \left (\frac {2 a}{a-\sqrt {a^2-b^2}};\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {\sin (c+d x)}}{a^4 \left (a-\sqrt {a^2-b^2}\right ) d \sqrt {e \sin (c+d x)}}-\frac {b^4 e^2 \Pi \left (\frac {2 a}{a-\sqrt {a^2-b^2}};\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {\sin (c+d x)}}{2 a^4 \left (a^2-b^2-a \sqrt {a^2-b^2}\right ) d \sqrt {e \sin (c+d x)}}-\frac {b^4 e^2 \Pi \left (\frac {2 a}{a+\sqrt {a^2-b^2}};\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {\sin (c+d x)}}{2 a^4 \sqrt {a^2-b^2} \left (a+\sqrt {a^2-b^2}\right ) d \sqrt {e \sin (c+d x)}}+\frac {2 b^2 \sqrt {a^2-b^2} e^2 \Pi \left (\frac {2 a}{a+\sqrt {a^2-b^2}};\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {\sin (c+d x)}}{a^4 \left (a+\sqrt {a^2-b^2}\right ) d \sqrt {e \sin (c+d x)}}+\frac {4 b e \sqrt {e \sin (c+d x)}}{a^3 d}-\frac {2 e \cos (c+d x) \sqrt {e \sin (c+d x)}}{3 a^2 d}+\frac {b^2 e \sqrt {e \sin (c+d x)}}{a^3 d (b+a \cos (c+d x))}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.
time = 44.52, size = 2012, normalized size = 2.28 \begin {gather*} \text {Result too large to show} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[(e*Sin[c + d*x])^(3/2)/(a + b*Sec[c + d*x])^2,x]

[Out]

((b + a*Cos[c + d*x])^2*((-2*Cos[c + d*x])/(3*a^2) + b^2/(a^3*(b + a*Cos[c + d*x])))*Csc[c + d*x]*Sec[c + d*x]
^2*(e*Sin[c + d*x])^(3/2))/(d*(a + b*Sec[c + d*x])^2) - ((b + a*Cos[c + d*x])^2*Sec[c + d*x]^2*(e*Sin[c + d*x]
)^(3/2)*((2*(-2*a^2 + 3*b^2)*Cos[c + d*x]^2*(b + a*Sqrt[1 - Sin[c + d*x]^2])*((b*(-2*ArcTan[1 - (Sqrt[2]*Sqrt[
a]*Sqrt[Sin[c + d*x]])/(-a^2 + b^2)^(1/4)] + 2*ArcTan[1 + (Sqrt[2]*Sqrt[a]*Sqrt[Sin[c + d*x]])/(-a^2 + b^2)^(1
/4)] - Log[Sqrt[-a^2 + b^2] - Sqrt[2]*Sqrt[a]*(-a^2 + b^2)^(1/4)*Sqrt[Sin[c + d*x]] + a*Sin[c + d*x]] + Log[Sq
rt[-a^2 + b^2] + Sqrt[2]*Sqrt[a]*(-a^2 + b^2)^(1/4)*Sqrt[Sin[c + d*x]] + a*Sin[c + d*x]]))/(4*Sqrt[2]*Sqrt[a]*
(-a^2 + b^2)^(3/4)) - (5*a*(a^2 - b^2)*AppellF1[1/4, -1/2, 1, 5/4, Sin[c + d*x]^2, (a^2*Sin[c + d*x]^2)/(a^2 -
 b^2)]*Sqrt[Sin[c + d*x]]*Sqrt[1 - Sin[c + d*x]^2])/((5*(a^2 - b^2)*AppellF1[1/4, -1/2, 1, 5/4, Sin[c + d*x]^2
, (a^2*Sin[c + d*x]^2)/(a^2 - b^2)] + 2*(2*a^2*AppellF1[5/4, -1/2, 2, 9/4, Sin[c + d*x]^2, (a^2*Sin[c + d*x]^2
)/(a^2 - b^2)] + (-a^2 + b^2)*AppellF1[5/4, 1/2, 1, 9/4, Sin[c + d*x]^2, (a^2*Sin[c + d*x]^2)/(a^2 - b^2)])*Si
n[c + d*x]^2)*(b^2 + a^2*(-1 + Sin[c + d*x]^2)))))/((b + a*Cos[c + d*x])*(1 - Sin[c + d*x]^2)) + (8*a*b*Cos[c
+ d*x]*(b + a*Sqrt[1 - Sin[c + d*x]^2])*(((-1/8 + I/8)*Sqrt[a]*(2*ArcTan[1 - ((1 + I)*Sqrt[a]*Sqrt[Sin[c + d*x
]])/(a^2 - b^2)^(1/4)] - 2*ArcTan[1 + ((1 + I)*Sqrt[a]*Sqrt[Sin[c + d*x]])/(a^2 - b^2)^(1/4)] + Log[Sqrt[a^2 -
 b^2] - (1 + I)*Sqrt[a]*(a^2 - b^2)^(1/4)*Sqrt[Sin[c + d*x]] + I*a*Sin[c + d*x]] - Log[Sqrt[a^2 - b^2] + (1 +
I)*Sqrt[a]*(a^2 - b^2)^(1/4)*Sqrt[Sin[c + d*x]] + I*a*Sin[c + d*x]]))/(a^2 - b^2)^(3/4) + (5*b*(a^2 - b^2)*App
ellF1[1/4, 1/2, 1, 5/4, Sin[c + d*x]^2, (a^2*Sin[c + d*x]^2)/(a^2 - b^2)]*Sqrt[Sin[c + d*x]])/(Sqrt[1 - Sin[c
+ d*x]^2]*(5*(a^2 - b^2)*AppellF1[1/4, 1/2, 1, 5/4, Sin[c + d*x]^2, (a^2*Sin[c + d*x]^2)/(a^2 - b^2)] + 2*(2*a
^2*AppellF1[5/4, 1/2, 2, 9/4, Sin[c + d*x]^2, (a^2*Sin[c + d*x]^2)/(a^2 - b^2)] + (a^2 - b^2)*AppellF1[5/4, 3/
2, 1, 9/4, Sin[c + d*x]^2, (a^2*Sin[c + d*x]^2)/(a^2 - b^2)])*Sin[c + d*x]^2)*(b^2 + a^2*(-1 + Sin[c + d*x]^2)
))))/((b + a*Cos[c + d*x])*Sqrt[1 - Sin[c + d*x]^2]) - (6*a*b*Cos[c + d*x]*Cos[2*(c + d*x)]*(b + a*Sqrt[1 - Si
n[c + d*x]^2])*(((1/2 - I/2)*(a^2 - 2*b^2)*ArcTan[1 - ((1 + I)*Sqrt[a]*Sqrt[Sin[c + d*x]])/(a^2 - b^2)^(1/4)])
/(a^(3/2)*(a^2 - b^2)^(3/4)) - ((1/2 - I/2)*(a^2 - 2*b^2)*ArcTan[1 + ((1 + I)*Sqrt[a]*Sqrt[Sin[c + d*x]])/(a^2
 - b^2)^(1/4)])/(a^(3/2)*(a^2 - b^2)^(3/4)) + ((1/4 - I/4)*(a^2 - 2*b^2)*Log[Sqrt[a^2 - b^2] - (1 + I)*Sqrt[a]
*(a^2 - b^2)^(1/4)*Sqrt[Sin[c + d*x]] + I*a*Sin[c + d*x]])/(a^(3/2)*(a^2 - b^2)^(3/4)) - ((1/4 - I/4)*(a^2 - 2
*b^2)*Log[Sqrt[a^2 - b^2] + (1 + I)*Sqrt[a]*(a^2 - b^2)^(1/4)*Sqrt[Sin[c + d*x]] + I*a*Sin[c + d*x]])/(a^(3/2)
*(a^2 - b^2)^(3/4)) + (4*Sqrt[Sin[c + d*x]])/a + (4*b*AppellF1[5/4, 1/2, 1, 9/4, Sin[c + d*x]^2, (a^2*Sin[c +
d*x]^2)/(a^2 - b^2)]*Sin[c + d*x]^(5/2))/(5*(a^2 - b^2)) + (10*b*(a^2 - b^2)*AppellF1[1/4, 1/2, 1, 5/4, Sin[c
+ d*x]^2, (a^2*Sin[c + d*x]^2)/(a^2 - b^2)]*Sqrt[Sin[c + d*x]])/(Sqrt[1 - Sin[c + d*x]^2]*(5*(a^2 - b^2)*Appel
lF1[1/4, 1/2, 1, 5/4, Sin[c + d*x]^2, (a^2*Sin[c + d*x]^2)/(a^2 - b^2)] + 2*(2*a^2*AppellF1[5/4, 1/2, 2, 9/4,
Sin[c + d*x]^2, (a^2*Sin[c + d*x]^2)/(a^2 - b^2)] + (a^2 - b^2)*AppellF1[5/4, 3/2, 1, 9/4, Sin[c + d*x]^2, (a^
2*Sin[c + d*x]^2)/(a^2 - b^2)])*Sin[c + d*x]^2)*(b^2 + a^2*(-1 + Sin[c + d*x]^2)))))/((b + a*Cos[c + d*x])*(1
- 2*Sin[c + d*x]^2)*Sqrt[1 - Sin[c + d*x]^2])))/(6*a^3*d*(a + b*Sec[c + d*x])^2*Sin[c + d*x]^(3/2))

________________________________________________________________________________________

Maple [A]
time = 0.83, size = 1569, normalized size = 1.78

method result size
default \(\text {Expression too large to display}\) \(1569\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*sin(d*x+c))^(3/2)/(a+b*sec(d*x+c))^2,x,method=_RETURNVERBOSE)

[Out]

(4*b/a^3*e*(e*sin(d*x+c))^(1/2)+b^3/a^3*e^3*(e*sin(d*x+c))^(1/2)/(-a^2*cos(d*x+c)^2*e^2+b^2*e^2)+2*b/a*e^3*(e^
2*(a^2-b^2)/a^2)^(1/4)/(-a^2*e^2+b^2*e^2)*arctan((e*sin(d*x+c))^(1/2)/(e^2*(a^2-b^2)/a^2)^(1/4))-5/2*b^3/a^3*e
^3*(e^2*(a^2-b^2)/a^2)^(1/4)/(-a^2*e^2+b^2*e^2)*arctan((e*sin(d*x+c))^(1/2)/(e^2*(a^2-b^2)/a^2)^(1/4))+b/a*e^3
*(e^2*(a^2-b^2)/a^2)^(1/4)/(-a^2*e^2+b^2*e^2)*ln(((e*sin(d*x+c))^(1/2)+(e^2*(a^2-b^2)/a^2)^(1/4))/((e*sin(d*x+
c))^(1/2)-(e^2*(a^2-b^2)/a^2)^(1/4)))-5/4*b^3/a^3*e^3*(e^2*(a^2-b^2)/a^2)^(1/4)/(-a^2*e^2+b^2*e^2)*ln(((e*sin(
d*x+c))^(1/2)+(e^2*(a^2-b^2)/a^2)^(1/4))/((e*sin(d*x+c))^(1/2)-(e^2*(a^2-b^2)/a^2)^(1/4)))+(cos(d*x+c)^2*e*sin
(d*x+c))^(1/2)*e^2*(-1/3/a^2/(cos(d*x+c)^2*e*sin(d*x+c))^(1/2)*((-sin(d*x+c)+1)^(1/2)*(2*sin(d*x+c)+2)^(1/2)*s
in(d*x+c)^(1/2)*EllipticF((-sin(d*x+c)+1)^(1/2),1/2*2^(1/2))+2*cos(d*x+c)^2*sin(d*x+c))+3*b^2/a^4*(-sin(d*x+c)
+1)^(1/2)*(2*sin(d*x+c)+2)^(1/2)*sin(d*x+c)^(1/2)/(cos(d*x+c)^2*e*sin(d*x+c))^(1/2)*EllipticF((-sin(d*x+c)+1)^
(1/2),1/2*2^(1/2))+2*b^4*(a^2-b^2)/a^4*(-1/2*a^2/e/b^2/(a^2-b^2)*(cos(d*x+c)^2*e*sin(d*x+c))^(1/2)/(-cos(d*x+c
)^2*a^2+b^2)-1/4/b^2/(a^2-b^2)*(-sin(d*x+c)+1)^(1/2)*(2*sin(d*x+c)+2)^(1/2)*sin(d*x+c)^(1/2)/(cos(d*x+c)^2*e*s
in(d*x+c))^(1/2)*EllipticF((-sin(d*x+c)+1)^(1/2),1/2*2^(1/2))-1/4/b^2/(a^2-b^2)^(3/2)*a*(-sin(d*x+c)+1)^(1/2)*
(2*sin(d*x+c)+2)^(1/2)*sin(d*x+c)^(1/2)/(cos(d*x+c)^2*e*sin(d*x+c))^(1/2)/(1-(a^2-b^2)^(1/2)/a)*EllipticPi((-s
in(d*x+c)+1)^(1/2),1/(1-(a^2-b^2)^(1/2)/a),1/2*2^(1/2))+5/8/(a^2-b^2)^(3/2)/a*(-sin(d*x+c)+1)^(1/2)*(2*sin(d*x
+c)+2)^(1/2)*sin(d*x+c)^(1/2)/(cos(d*x+c)^2*e*sin(d*x+c))^(1/2)/(1-(a^2-b^2)^(1/2)/a)*EllipticPi((-sin(d*x+c)+
1)^(1/2),1/(1-(a^2-b^2)^(1/2)/a),1/2*2^(1/2))+1/4/b^2/(a^2-b^2)^(3/2)*a*(-sin(d*x+c)+1)^(1/2)*(2*sin(d*x+c)+2)
^(1/2)*sin(d*x+c)^(1/2)/(cos(d*x+c)^2*e*sin(d*x+c))^(1/2)/(1+(a^2-b^2)^(1/2)/a)*EllipticPi((-sin(d*x+c)+1)^(1/
2),1/(1+(a^2-b^2)^(1/2)/a),1/2*2^(1/2))-5/8/(a^2-b^2)^(3/2)/a*(-sin(d*x+c)+1)^(1/2)*(2*sin(d*x+c)+2)^(1/2)*sin
(d*x+c)^(1/2)/(cos(d*x+c)^2*e*sin(d*x+c))^(1/2)/(1+(a^2-b^2)^(1/2)/a)*EllipticPi((-sin(d*x+c)+1)^(1/2),1/(1+(a
^2-b^2)^(1/2)/a),1/2*2^(1/2)))-b^2/a^4*(3*a^2-5*b^2)*(-1/2/(a^2-b^2)^(1/2)/a*(-sin(d*x+c)+1)^(1/2)*(2*sin(d*x+
c)+2)^(1/2)*sin(d*x+c)^(1/2)/(cos(d*x+c)^2*e*sin(d*x+c))^(1/2)/(1-(a^2-b^2)^(1/2)/a)*EllipticPi((-sin(d*x+c)+1
)^(1/2),1/(1-(a^2-b^2)^(1/2)/a),1/2*2^(1/2))+1/2/(a^2-b^2)^(1/2)/a*(-sin(d*x+c)+1)^(1/2)*(2*sin(d*x+c)+2)^(1/2
)*sin(d*x+c)^(1/2)/(cos(d*x+c)^2*e*sin(d*x+c))^(1/2)/(1+(a^2-b^2)^(1/2)/a)*EllipticPi((-sin(d*x+c)+1)^(1/2),1/
(1+(a^2-b^2)^(1/2)/a),1/2*2^(1/2))))/cos(d*x+c)/(e*sin(d*x+c))^(1/2))/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sin(d*x+c))^(3/2)/(a+b*sec(d*x+c))^2,x, algorithm="maxima")

[Out]

e^(3/2)*integrate(sin(d*x + c)^(3/2)/(b*sec(d*x + c) + a)^2, x)

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sin(d*x+c))^(3/2)/(a+b*sec(d*x+c))^2,x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sin(d*x+c))**(3/2)/(a+b*sec(d*x+c))**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sin(d*x+c))^(3/2)/(a+b*sec(d*x+c))^2,x, algorithm="giac")

[Out]

integrate((e*sin(d*x + c))^(3/2)/(b*sec(d*x + c) + a)^2, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\cos \left (c+d\,x\right )}^2\,{\left (e\,\sin \left (c+d\,x\right )\right )}^{3/2}}{{\left (b+a\,\cos \left (c+d\,x\right )\right )}^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*sin(c + d*x))^(3/2)/(a + b/cos(c + d*x))^2,x)

[Out]

int((cos(c + d*x)^2*(e*sin(c + d*x))^(3/2))/(b + a*cos(c + d*x))^2, x)

________________________________________________________________________________________